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Short Papers

Exact Wave Resistance of Coaxial Regular Polygonal
Conductors

RYUITI TERAKADO

Abstract — There are various cases in which one can evaluate exactly the
wave resistance of coaxial conductors such that each of the inner and outer
conductors is a regular polygon. They are obtained by conformal mapping
using complete elliptic integrals. Such typical examples each with exact
wave resistances are shown.

1. INTRODUCTION

Transmission lines formed by regular polygonal coaxial inner
and outer conductors whose wave resistances can be determined
exactly are useful as a standard of approximation for the wave
resistances of various transmission lines [1]-[3]. In this paper, we
consider coaxial conductors whose cross section of either the
inner or outer conductor is an equilateral and equiangular poly-
gon.

The dielectric medium is taken to be free space.

If the cross section of a regular polygonal coaxial conductor
has n mirror symmetric lines, we divide the cross section into
symmetrical 2» parts. Let R, denote the two-dimensional geo-
metrical resistance between the inner and outer conductors of the
partial region. Then the wave resistance of the coaxial line can be
written

R=RyR,/2n

where R, =1207 =377 Q.
The symbols of radii used in this paper are as follows:

M

r, radius of circle circumscribed about an inner conductor (r; =1
in all cases),

r, radius of circle inscribed in an outer conductor,

r; radius of circle inscribed in an inner conductor,

r, radius of circle circumscribed about an outer conductor.

II. EQUILATERAL AND EQUIANGULAR POLYGONAL INNER
CONDUCTOR

In Fig. 1, A is the middle point and B is the end point of a
side of an inner equilateral and equiangular polygon of a cross
section. Let O denote the center of the regular polygon. Points C
and D are placed, respectively, on the lines OB and OA. Further-
more, point D is located on the line bisecting #ABC. Point C is
determined by the relation of two right-angled triangles A BAD =
ABCD. Then the quadrilateral ABCD can be mapped confor-
mally to a semi-circle based on its symmetry. The procedure is as
follows. We regard point B of each region, that is, the quadri-
lateral ABCD and the semi-circle ABCD, as a source of lines of
electric force, and regard the part ADC of the circumference of
each region as a sink. In the semi-circle, any radius coincides then
with a line of electric force. In the quadrilateral, however, it is not
simple to draw exactly all of the lines of electric force. The three
segments BA, BD, and BC coincide with lines of electric force,
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Coaxial regular polygon cross sections with the modulus of geometri-
cal resistance: 1 /ﬁ .

and it is clear that these lines of electric force correspond to the
same lines of the semi-circle. The geometrical resistance Ry
between 4B and CD can be obtained by the successive confor-
mal mapping of the semi-circle to a half-plane [4].

In Fig. 1, the modulus of the complete elliptic integrals K(k)
and K’(k) for geometrical resistance is k=1/vV2, and R, =
K’(k)/K(k)=1 is clear. Therefore, the wave resistance of the
type of Fig. 1 having an equilateral and equiangular polygonal
inner conductor with » side is

R=R,/2n. (2

Moreover, Fig. 1 shows concrete examples for n=2,3,---,6. In
this case, an outer polygon becomes necessarily an equilateral
and equiangular polygon. Accordingly, taking radius #, =1, other
radii are expressed as follows: ‘
r=1+sina/n r=cosa/n r,=tan(n+2)x/4n. (3)

In Fig. 2, £ABC is divided into three equal angles, and the
three right-angled triangles are geometrically equal. The geomet-
rical resistance can be obtained using complete elliptic integrals
for modulus & =\/§ /2
_K(B3/2)

K(V3/2)

The wave resistance becomes
R =0.7817010R, /2n.

= 0.7817010. (4)

) o

(%)

The radii are expressed as follows:

_sin*(n+2)7/3n

nT sin(n—1)7/3n (n<4) (62)
_sin(n+2)7/3n

R Sa(n—T)aan 2P (€b)

B =cosm/n (6¢)
_ sinm/n (64)

T Sin(n~1)a/3n

In this case, an outer polygon is not equiangular except n = 4.
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Coaxial polygon cross sections with inmer regular polygon and the

Fig. 2.
modulus of geometrical resistance : \/3— /2.
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n=3
Coaxial polygon cross sections with inner regular polygon and the
modulus of geometrical resistance: Y2+ \/5 /2.

n=6

Fig. 3.

Similarly, in Fig. 3, having four geometrically equal right-
angled triangles, we obtain

K’(\/2+\/- /2)
k(V2+v2 /2)

. sin(3n+6)7/8n
27 sin(3n—2)7/8n

ry=cosm/n

= 0.6806342 (7)

(82)

(8b)

2
~ . [142sinm/nt — S/ (8¢0)
sin? (3n —2) 7/8n

In Fig, 4, the arrangement of three geometrically equal right-
angled triangles is different from Fig. 2 having similarly three
geometrically equal right-angled triangles. It becomes

k(1,2
(L) ~ L2918

©)

Ry=

=(1+2sina/n)sin(n+2)7/4n  (n<6) (10a)
rn=tan(n+2)n/4n  (n>6) (10b)
r,=cosm/n (10c)
n=tan(n+2)x/4n (n<4) (10d)
r,=14+2sinm/n  (n>4). (10e)

Fig. 4. Coaxxal polygon cross sections with inner regular polygon and the

modulus of geometrical resistance:1,/2.

LNEOTE

Fig. 5. Coaxial polygon cross sections with outer regular polygon and the
modulus of geometrical resistance : \/3— /2.
III. EQUILATERAL AND EQUIANGULAR POLYGONAL

OUTER CONDUCTOR

In Fig. 5, points 4 and B are placed on a side of an outer
equilateral and equiangular polygon. Three geometrically equal
right-angled triangles are arranged around point B towards the
inside. The method deriving the wave resistance is similar to that
of an equilateral and equiangular polygonal inner conductor.

The geometrical resistance of the semi-circle in Fig. 5 is equal
to that in Fig. 2. Therefore, the wave resistance of Fig. 5 is
equivalent to (5). Radii ,, r;, and r, are as follows:

1 sin(2n —4)7/3n
Ea) [1+ sin(n—2)7/3n ]
_sin(n+L)m/3n|
T sin(n—2)7/3n
_sin(n+1)7/3n
C sin(n—2)7/3n"

(11a)

sinm/n
sin(2n —2)7/3n

] (11b)

(11¢)

IV. APPLICATIONS

Fig. 6 shows different examples. Fig. 6(a) has a regular octago-
nal inner conductor with eight mirror lines; however, the outer
conductor has only four mirror lines. It results from two geomet-
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Fig. 6. A family of polygon cross sections suited for the same rule as the
preceding figures.

rically equal triangles not arranged on a half side but on a whole
side of the inner regular octagon. Furthermore, two geometrically
equal triangles are not right-angled. The exact wave resistance
becomes (because R =1)

R=R,/8

and r, =1.765 and r, = 4.262.

Fig. 6(b), having five geometrically equal right-angled triangles,
is symmetrical with three mirror lines, though the inner regular
hexagon has six mirror lines. The exact wave resistance is

K'(k)
K(k)

R= % R, = 0.09298R,,

where

2(cos w/5—cos3m/5)

k= (1—cos3a/5)(1+cos n/5)

= (.9713.

The radii are , =1.5 and r, =2.0.

In Fig. 6(c), two geometrically equal triangles are not right-
angled, and they are arranged on a whole side of the outer regular
octagon. This case can be considered to be the inversion of Fig.
6(a). Therefore, the exact wave resistance is the same as Fig. 6(a).
The radii are r, =1.631, r, = 0.4142, and r, =1.765.

In Fig. 6(d), both of the inner and outer conductors are not
equiangular polygons. This case is considered as a slight variation
for n =3 of Fig. 2 having three geometrically equal right-angled
triangles. The wave resistance is equal to Fig. 2 because the
procedure of mapping to a semi-circle is similar to Fig. 2. Fig.
6(d) has R = 0.1303R,, », =1.609, r, = 0.5877, and r, = 2.433.

V. CONCLUSION

Some shapes of coaxial inner and outer regular polygonal
conductors can be exactly evaluated on their wave resistance.
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The following special cases of this paper coincide with Wheeler

(1

Herein Wheeler

Fig.1 n=2 Fig. 23
n=3 25
n=4 25

Fig.2 n=2 26 |
n=4 26

Fig.3 n=2 26.
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Analysis of the Transmission Characteristics of
Inhomogeneous Grounded Finlines

" ADALBERT BEYER

Abstract —This paper describes a concept for an efficient design of
finline tapers that is especially useful in cases when certain quantities have
been prescribed with respect to reflection loss and bandwidth. Since abrupt
discontinuities are neglected, the analysis is applicable to smooth finline
tapers only.

Various contour functions are investigated for the taper optimization.
Experimental results for optimized tapers confirm the design theory.

1. INTRODUCTION

Smooth inhomogeneous finlines have already been used as
broad-band components like transformers, attenuators, detectors,
mixers, and nonreciprocal elements [1}, [2], [5].

In the beginning, the design of inhomogeneous finlines was
mainly done experimentally, i.e., the cross sections of these tapers
had been designed with a general parabolical dependence of the
slot widths (2s) on the length coordinate (z) with the exponent
of the parabola having been determined experimentaily [5].

Recently, there have been publications of nonexperimental
design procedutes, e.g., in [6], where the use of a spectral-domain
approach has been suggested. Another concept [9], which consid-
ers inhomogeneous finlines that consist of an infinite number of
elementary homogeneous finline sections, has proved the realiza-
bility of this line.

This paper follows the method presented in [4], which has the
considerable advantage of taking into account the influence of
the thickness of the metallization and of the longitudinal slits in
the housing.
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