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Short Papers

Exact Wave Resistance of Coaxial Regolar Polygonal

Conductors

RYUITI TERAKADO

,4bs?ract —There are various cases in which one can ewduate exactly the

wave resistance of coaxial conductors such that each of the inner and outer

conductors is a regular polygon. They are obtained by conformal mapping

using complete elliptic integrals. Such typical examples each with exaet

wave resistances are showo.

I. INTRODUCTION

Transmission lines formed by regular polygonal coaxial inner

and outer conductors whose wave resistances can be determined

exactly are useful as a standard of approximation for the wave

resistances of various transmission lines [1]–[3]. In this paper, we

consider coaxial conductors whose cross section of either the

inner or outer conductor is an equilateral and equiangular poly-

gon.

The dielectric medium is taken to be free space.

If the cross section of a regular polygonal coaxial conductor

has n mirror symmetric lines, we divide the cross section into

symmetrical 2 n parts. Let Rn denote the two-dimensional geo-

metrical resistance between the inner and outer conductors of the

partial region. Then the wave resistance of the coaxial line can be

written

R= RoRO/2n (1)

where RO = 1209r = 377 Q.

The symbols of radii used in this paper are as follows:

rl radius of circle circumscribed about an inner conductor ( rl = 1

in all cases),

rz radius of circle inscribed in an outer conductor,

r~ radius of circle inscribed in an inner conductor,

rq radius of circle circumscribed about an outer conductor.

II. EQUILATERAL AND EQUIANGULAR POLYGONAL INNER

CONDUCTOR

In Fig. 1, A is the middle point and B is the end point of a

side of an inner equilateral and equiangular polygon of a cross

section. Let O denote the center of the regular polygon. Points C

and D are placed, respectively, on the lines OB and OA. Further-

more, point D is located on the line bisecting LABC. Point C is

determined by the relation of two right-angled triangles A BAD=

A BCD. Then the quadrilateral ABCD can be mapped confor-

mably to a semi-circle based on its symmet~. The procedure is as

follows. We regard point B of each region, that is, the quadri-

lateral ABCD and the semi-circle ABCD, as a source of lines of

electric force, and reg@rd the part ADC of the circumference of

each region as a sink. In the semi-circle, any radius coincides then

with a line of electric force. In the quadrilateral, however, it is not

simple to draw exactly all of the lines of electric force. The three

segments BA, BD, and BC coincide with lines of electric force,
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Fig. 1. Coaxial regular polygon cross sections with the modulus of geometri-

cal resistance: l/fi.

and it is clear that these lines of electric force correspond to the

same lines of the semi-circle. The geometrical resistance Rn .

between AB and CD can be obtained by the successive confor-

mal mapping of the semi-circle to a half-plane [4].

In Fig. 1, the modulus of the complete elliptic integrals K(k)

and K‘( k) for geometrical resistance is k = l/fi, and Rn =

K‘( k)/K( k) = 1 is clear. Therefore, the wave resistance of the

type of Fig. 1 having an equilateral and equiangukr polygonal

inner conductor with n side is

R= RO/2n. (2)

Moreover, Fig. 1 shows concrete examples for n =2,3,. ..,6. In

this case, an outer polygon becomes necessarily an equilateral

and equiangukr polygon. Accordingly, taking radius rl =1, other

radii are expressed as follows:

r2=l+sinn/n r3=cos7r/n r~= taD(n+2)fr/4n. (3)

In Fig. 2, zABC is divided into three equal angles, and the

three right-angled triangles are geometrically equal. The geomet-

rical resistance can be obtained using complete elliptic integrals

for modulus k = @/2

R = K’(fi/2)

❑ K(fi/2) = 0“7817010”
(

The wave resistance becomes

R = 0.7817010 R0/2n.

The radii are expressed as follows:

sinz ( n +2) 77/3n
(n<4)

‘2= sin(n–l)n/3n

sin( n’+2) 7r/3n
r2 = (n>4)

sin(n –l)rr/3n

(4)

(5)

(6a)

(6b)

r~ = cos 7r/ n (6c)

sin 7r/n
ra=l+

sin(rz –l)m/3n “
(6d)

In this case, an outer polygon is not equiangular except n =4.
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Fig. 4. Coaxial polygon cross sections with inner regular polygon and the

modulus of geometrical resistance: 1 /2.
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Fig. 2. Coaxial polygon cross sections with inner regular polygon and the

modulus of geometrical resistance: ~/2.
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Fig. 3. Coaxial polygon cross sections with inner regular polygon and the

modulus of geometrical resistance: ~/2.

Similarly, in Fig. 3, having four geometrically equal right-

angled triangles, we obtain

~ . K’(dzm)
= 0.6806342

“ K(~~/2)

sin(3n +6)n/8n
~2 =

sin(3n–2)~/8n

(7)

(8a)

r~ = cos n/ n (8b)

l+2sinrr/n+
sin2 .n/ n

r4 = (8c)
sin2 (3n –2)r/8n “

In Fig. 4, the arrangement of three geometrically equal right-

angled triangles is different from Fig. 2 having similarly three

geometrically equal right-angled triangles. It becomes

“(1/2) =1.Zvgz(jlfj
‘m= K(l/2)

(9)

r2 = (l+2sin7r/n) sin(n+2)m\4n (n <6) (lOa)

rz = tan(n+2)7r/4n (n>6) (lOb)

r~ = cos 7T/ n (1OC)

r4 = tan(n +2)n/4n (n<4) (lOd)

r4=l+2sin7r/n (n>4). (lOe)
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Fig. 5. Coaxial polygon cross sections with outer regular polygon and the

modulus of geometrical resistance: &/2.

III. EQUILATERAL AND EQUIANGULAR POLYGONAL

OUTER CONDUCTOR

In Fig. 5, points A and B are placed on a side of an outer

equilateral and equiangular polygon. Three geometrically equal

right-angled triangles are arranged around point B towards the

inside. The method deriving the wave resistance is similar to that

of an equilateral and equiangular polygonal inner conductor.

The geometrical resistance of the semi-circle in Fig. 5 is equal

to that in Fig. 2. Therefore, the wave resistance of Fig. 5 is

equivalent to (5). Radii r2, r~, and ra are as follows:

[“r2 =; 1+ ‘1n(2n ‘4)m/’3n
1

(ha)
sm(n –2)7r/3n

sin(n +l)7r/3n

[
1– .

sin 7r/n
r3 = 1 (llb)

sin(n –2)7r/3n sm(2n –2) 77/3n

sin(n+l)r/3n ‘
r4 = (llC)

sin(n –2)n/3n “

IV. APPLICATIONS

Fig. 6 shows different examples. Fig. 6(a) has a regular octago-

nal inner conductor with eight mirror lines; however, the outer

conductor has only four mirror lines. It results from two geomet-
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(a)

The following special cases of this paper coincide with Wheeler

[1]:

Herein Wheeler

Fig.1 n=2 Fig. 23
n=3 25
n=4 25

Fig.2 n=2 26
n=4 26

Fig.3 n=2 26.

(b)

[1]

[2]

[3]

[4]
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Fig. 6. A family of polygon cross sections suited for the same rule as the

preceding figures.

rically equal triangles not arranged on a half side but on a whole

side of the inner regular octagon. Furthermore, two geometrically

equal triangles are not right-angled. The exact wave resistance

becomes (because R.= 1)

R= Ro/8

and rz =1.765 and rd = 4.262.

Fig. 6(b), having five geometrically equal right-angled triangles,

is symmetrical with three mirror lines, though the inner regular

hexagon has six mirror lines. The exact wave resistance is

R=~K’(k)
— RO = 0.09298R0

6 K(k)

where

‘=v’zzmz=O’713
The radii are rz = 1.5 and rd = 2.0.

In Fig. 6(c), two geometrically equal triangles are not right-

angled, and they ye arranged on a whole side of the outer regular

octagon. This case can be considered to be the inversion of Fig.

6(a). Therefore, the exact wave resistance is the same as Fig. 6(a).

The radii are rz =1.631, rq = 0.4142, and r~ = 1.765.

In Fig. 6(d), both of the inner and outer conductors are not

equiangular polygons. This case is considered as a slight variation

for n = 3 of Fig. 2 having’ three geometrically equal right-angled

triangles. The wa;e resistance is equal to Fig. 2 because the

procedure of mapping to a semi-circle is similar to Fig. 2. Fig.

6(d) has R = 0.1303R0, rz = 1.609, r3 = 0.5877, and r4 = 2.433.

V. CONCLUSION

Some shapes of coaxial inner and outer regular polygonal

conductors can be exactly evaluated on their wave resistance.

Analysis of the Transmission Characteristics of

Inhomogeneous Grounded Finlines

ADALBERT BEYER

Abstract —This paper describes a concept for an efficient design of

finline tapers that is espeeiafly useful in cases when certain quantities have

heen prescribed with respect to reflection loss and bandwidth. Since abrupt

discontinuities are neglected, the analysis is applicable to smooth ffnline

tapers only.

Various contour functions are investigated for the taper optimization.

Experimental results for optimized tapers confirm the design theory.

I. INTRODUCTION

Smooth inhomogeneous finlines have already been used as

broad-band components like transformers, attenuators, detectors,

mixers, and nonreciprocal elements [1], [2], [5].

In the beginning, the design of inhomogeneous finlines was

mainly done experimentally, i.e., the cross sections of these tapers

had been designed with a general parabolical dependence of the

slot widths (2s ) on the length coordinate (z) with the exponent

of the parabola having been determined experimentally [5].

Recently, there have been publications of nonexperimental

design procedures, e.g., in [6], where the use of a spectral-domain

approach has been suggested. Another concept [9], which consid-

ers inhomogeneous finlines that consist of an infinite number of

elementary homogeneous finline sections, has proved the realiza-

bility of this line.

This paper follows the method presented in [4], which has the

considerable advantage of taking into account the influence of

the thickness of the metallization and of the longitudinal slits in

the housing.
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